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A Cylindrical Multiconductor Stripline-Like
Microstrip Transmission Line

DOREL HOMENTCOVSCHI

Abstract — An analytical expression for the Maxwell capacitance matrix
of a class of cylindrical inhomogeneous, multiconductor transmission lines
is provided. This class includes cylindrical structures symmetrical with
respect to the circuit circle and having a symmetry axis. The effective
dielectric constant of the line is found to be the arithmetical mean of the
dielectric constants of the two media. Hence, this structure enjoys the
main advantages of the planar stripline-like microstrip systems. It is also
pointed out how to obtain elliptical stripline-like microstrip transmission
lines.

I. INTRODUCTION

N HIS PAPER Garg [1] considered a transmission

configuration which has the advantages of both stripline
and microstrip line. This new transmission line consists in
an inhomogeneous planar shielded structure having equal
spacing (substrate thicknesses) between the plane of the
circuit and the upper and lower shield planes. In [2]
analytical formulas for determining the Maxwell capaci-
tance matrix of multiconductor coupled stripline-like mi-
crostrip lines are given. The results obtained confirm that
the dominant propagation modes have the same phase
velocities independent of the strip widths and spacing and
that the velocities are given by the phase velocity of the
uncoupled line. This characteristic will result in a very
good directivity for multiconductor coupled line direc-
tional couplers which use stripline-like microstrip.

Using flexible dielectric materials, it is possible to con-
struct nonplanar transmission lines that can be wrapped
around a cylindrical surface. This generates the cylindrical
transmission lines which, in the quasi-TEM operating
mode, have recently received much attention in the mi-
crowave literature. The first approach entails the solution
of the Laplace equation in orthogonal curvilinear coordi-
nates (cylindrical or elliptical); in this way Wang [3] ana-
lyzed homogeneous cylindrical striplines and microstrip
lines, Reddy and Deshpande [4] the cylindrical stripline
with multilayer dielectrics, and Joshi and Das [5] homoge-
neous elliptical striplines. In this method the solution is
expressed as an infinite series and the constants are deter-

Manuseript received March 14, 1988; revised August 19, 1988,

The author is with the Faculty of Electrotechnics, Polytechnic Institute
of Bucharest, 313 Splaiul Independentei, Bucharest, Romania.

IEEE Log Number 8825375.

mined by truncating the series; hence the analysis is not
rigorous and the solutions are approximate. The second
approach [6]-[8] uses conformal mapping of the given
structure into a planar one and, further on, uses known
results for planar structures [9]. The method is rigorous but
in this form it is not suitable for the analysis of cylindrical
multiconductor transmission lines, Chan and Mittra {10]
applied another approach, the spectral-domain technique
[11}, to study cylindrical multiconductor transmission lines.
This method allows a rigorous numerical iterative proce-
dure which uses the fast Fourier transform algorithm.

This paper presents. an analysis leading, in principle, to
an exact evaluation of parameters for an extensive class of
cylindrical inhomogeneous strip transmission line configu-
rations. The method is based on conformal mapping and
on the evaluation of Maxwell’s capacitance matrix for the
system of aligned planar strips given in [2]. The domain
must have a symmetry plane and at the same time must be
symmetrical with respect to the circuit surface. In the case
of the circular cylindrical structure, this requires that the
radius of the circuit cylinder equal the geometrical mean of
the radii of the two shield cylindrical surfaces. The as-
sumption that the domain is symmetrical with respect to
the circuit surface eliminates most of the complications
arising from the inhomogeneity of the dielectric substrate
media because the perpendicular component of the electric
field at the circuit surface is zero. The effective dielectric
constant of the system is simply the arithmetical mean of
the dielectric constant values of the two substrate media.
Hence, the structure presented here has the principal ad-
vantage of the symmetrical plane structure, namely that
the mode velocities are independent of the strip widths and
spacing; this is why the above structure can be thought of
as a cylindrical stripline-like microstrip structure.

It is to be noticed that the above-mentioned symmetry
of the structure with respect to a plane is necessary only
for computation of the Maxwell capacitance matrix. The
independence of the mode velocities of the strip dimen-
sions and spacing also holds if the last symmetry condition
is given up. By using certain conformal mappings the
above results can be extended to such other nonplanar
structures as elliptical stripline-like microstrip structures,
which are discussed here as well.
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Fig. 1.

Multiconductor cylindrical transmission line.

II. Basic CONFIGURATION AND
CONFORMAL MAPPINGS

The cross section of the cylindrical multiconductor
transmission line to be analyzed is shown in Fig. 1. It
consists of three circles S, S,, S;; the cylindrical surfaces
S, and §; (of radii », and 7, respectively) are grounded
and the surface S, (the circuit surface) separates the two
different dielectric media whose relative dielectric con-
stants are €; and €,. On the circuit surface are placed some
zero-thickness conducting strips A;B, with arbitrary width
and spacing but symmetrical with respect to the horizontal
plane (Ox axis in Fig. 1). The position of the strips can be
characterized by ¢, ¢, angles. It is assumed that r, = \/E ;
Le., the radius of the circuit surface is the geometrical
mean of the shield cylindrical surfaces.

To analyze this system, operating in the quasi-TEM
mode, we use two conformal mappings. First, the logarith-
mic transform

z
zy=—i-In—
n

(1)

maps the domain bounded by the circles S; and S, and
the line cut into the symmetrical rectangle in the z; = x; +
iy, plane (Fig. 2).

The logarithm determination in (1) is the principal one
and the abscissas of the points A ,» B, will be Y,
respectively. Further on, the domain in Fig. 2 is confor-
mally mapped into the Z= X + iY plane with certain line
cuts on the real axis (Fig. 3). This is obtained by using a
Schwarz—Christoffel transform for representing the upper
rectangle (dashed in Fig. 2) in the upper half-plane Im { Z }
> 0; by symmetry reasons the domain filled with dielectric
medium of permittivity €, is mapped into the half-plane
Y < 0. Hence we have

Z=sn(z; K/m, k). (2)

Here sn is the Jacobi function and K is the complete
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Fig. 2. The planar structure obtained by conformal mapping of the
domain in Fig. 1.

elliptic integral of the first kind of modulus k,. The
modulus is the solution of the equation

K(k{) B In(r,/n) k,_m
1= 1-

K (k) B i ’
The abscissas a,, b, of the points corresponding to the
strip ends can be obtained as

aj=sn(q>j-K/7r,k1)

(3)

b=sn(y,-K/m, ky). (4)

The symmetry of the domain in Fig. 1 with respect to the
Ox axis implies the symmetry of the strips in Fig. 3 with
respect to the vertical axis.

III. DETERMINATION OF MAXWELL’S
CAPACITANCE MATRIX

Let V,,Q, be, respectively, the potential and the charge
on the strip A B, and let by =5, , be the right end of the
first (infinite) conducting strip and a,,,, the left end of the
other infinite strip in Fig. 3. We use the expression relating
the potentials and charges of a system of planar aligned
strips given in [2] and [12]:

i i B(l>j)Qk=(€l+€2) Zi: A(l,k)Vk

k=1,=0 1

(I=1,---,n) (5)

where

A(l,k)=(-1)kfabk\/l%(;t.)_| i@
t1~—1

yIP(2)]
P(z)= nfl (z~a,)(z-b,).

Jj=1

B(l,k)=('—1)k+1fbk+l dt
L3

(6)

In formula (5) we can take into account the symmetry of
the strip. By also using the relation

% 81, j) =0
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The canonic domain obtained by conformal mappings of the domain in Fig. 1.

forn=2p (even) (I=1,--+,2p) (7)

= (el+cz){pilA(l,k)[Vk+(—1)1+1V2p_k] +VPA(l,p)} forn=2p—1(odd) (I=1,---,2p—1). (8)
k=

In relation (8) the coefficient of 0, and A(/, p) vanishes
for even values of the index /.
We now write
Vi=vi+vy
—_ I/Jo

— e
V;1~j+1 - V;

Q,=07+07
Qn—/-i—l:Qj_Qj

o f2]

Vas1=Vaa Q,i1=0Q%+1
2 2 2 2
and we split the problem into an “even” problem and an
“odd” problem.

for n odd (9)

A. The Even Maxwell Capacitance Matrix

If the potentials of the strips are symmetrical with
respect to the Ox axis in Fig. 1, we have V,=V,_  =V5
the charges of the strips are symmetrical too, Q;=Q, .,
= Q¢ and the line MN can be assumed to be a magnetic
wall. In plane Z the lines MPN are field lines and,
consequently, we have

by=by1=—1/k

P(2)= (2= k") [1(2-a)(z-1). (10

S
Relations (7) and (8) become
P (k-1

XX Be(21’,j))Qi= (€1+<2)k21:: A2l k)V¢

k=11,-0 1
('=1,---,p) forn=2p (11)

ay1=1/k

p—1{k-1 1 r—1
2| X B2r-1,j) Qct 3 2 B(2r-1.j)|Q;

k=1\,=0 Jj=0

p—1 1
=(e1+e2){kZIAe(2l’~1,k)V,f+5{16(21’—1,1))1/;}

(I'=1,---,p) forn=2p-1.

(12)

Relations (11) and (12) give

Qc=CrV° (13)
where the even Maxwell capacitarice matrix is
C°=(e+e)[N] Mo (14)

The matrices N¢ M*¢ have the entries

k—1
Ne(I' k)= 3 B(2L, j)
Jj=0

Me(ll,k)=Ae(2l/9k) (l’,k=1,"',p) (15)

for n=2p and

k—1
Ne(I' k)= Y B*(2I'-1, )
j=0

Ml k)= A2 =1,k)  (k=1,---,p—1)

p—1
Ne(l',p) =05 Y B(2I'-1. )
=0

Me(l, p)=054°2'=1,p)  (I'=1,---,p) (16)

forn=2p-1.

B. The Odd Maxwell Capacitance Matrix

In the case where the strip potentials in the physical
plane are antisymmetrical with respect to the Ox axis we
have V,=—V,_,,, =V’ and the charges of the strips are
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antisymmetrical too: @, =—Q,_, ;= Q7. The line MN is
now an electric wall at the zero potential and therefore the
lines NPM in the Z plane are potential lines. We can write

by=by 1=-1 ap1=1

P(Z)=(2*-1) li[l(Z—aj)~(Z—bj). (17)

Relations (7) and (8) now give
-

b
by
k=1
p
= (e +€) Y A2 —1,k)V¢
k=1

k —

1
Y. B°(2I'-1, )
=0

(I'=1,---,p) forn=2p (18)

p=1l/k-1 p-1
)INIDY B°(21’,J'))QZ= (e +e) X A°QUK)V
k=1\,=0 k=1
(r'=1,---,p—1) forn=2p—1. (19)
We have
o°=Cre (20)
where the odd Maxwell capacitance matrix is
Co=(e;+¢,))[N°] 7'M (21)

The matrices N°, M? are given by relations (22), (23). For

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 3, MARCH 1989

n="2p we have

k~—1
Ne(I' k)= Y B°(2I'-1, j)
;=0
Mo(l' k)= A4°Q2I'~1, j)

(I k=1.---,p) (22)

while for n=2p -1,

k-1
Ne(l' k)= X B°(21', ))

=0

Me(I' k)= A°(21', k)

(Il k=1,---,p—1).

(23)

C. The Complete Maxwell Capacitance Matrix

By using the even and odd Maxwell capacitance matri-
ces given above we can now assemble the complete Maxwell
matrix of the given structure. We have, for n=2p,

14

Q,=07+07= 2 {C(j.K)VE+Co(j. k)VP}
k=1

- £ 0slc=(j. )+,

2p
+ Y 05[Ce(j,2p—k+1)
k=p+1

—C(j,2p—k+1)]V,  for(j=1,---,p).

Hence
k) = 0.5[Ce(j. k)+Cj, k)] forl<k<p
/- 05(Ce(j.2p—k+1)—C°(j,2p—k+1)] forp+1<k<2p
(jzl,“',p)
(24)
Clik) = {0.5[C6(2p—j+1,k)—C"(2p—j+1,k)], 1<k<p
| 05[Ce2p—j+1,2p—2k+1)+C°(2p— j+1,2p—k+1)] forp+1<k<2p
(j=p+1,---.2p).
Similarly in the case where n =2p —1 we obtain
0.5[Ce(j. k)+C°(j, k)], 1<k<p-1
C(] k)= Ce(j7p)’ _p
’ 05[ce(j,2p~k)-C°(j,2p—k),  p+l<k<2p-1
(j=1,~-,p——1)
0.5C¢(p,k), 1<k<p-1
C(p.k)={ Cp,p), k=p (25)
0.5C*(p.2p—k), pHl<k<2p—1
0.5[C(2p~j,k)—C°(2p—j. k)], I<k<p-1
) C2p-J,p), k=
C(j k)= ( ) P

0.5[C(2p—j.2p—k)+C°(2p—j2p—k)],

ptl<k<2p-1
(j=p+1,---,2p-1)
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We shall now emphasize certain properties resulting
from the above relations. Expressions (24) and (25) pro-
vide the Maxwell capacitance matrix of the given structure
in terms of certain hyperelliptic integrals given by relations
(6). The geometry of the physical domain enters these
formulas only by the modulus k; and the images in the Z
plane of the end of the strips; these can be computed by
means of relations (3) and (4). The effective determination
of the Maxwell capacitance matrix involves some numeri-
cal quadrature and some algebra.

Let us now consider the case of the homogeneous dielec-
tric medium (¢; = ¢, = ¢;). Relations (13) and (21) give

(€t e,y

oo ate
- 2¢

2¢,.

o
hom o= hom

where the matrices Cy_ ., Cp.,, correspond to the homoge-
neous case. Relations (24) and (25) give

€ te,
2¢,

(26)

Therefore, the Maxwell capacitance matrix of the multi-
conductor system in a stratified dielectric in Fig. 1 can be
obtained by relation (26) if we know the matrix of the
same multiconductor system in free space. Hence, the
effective relative dielectric constant of the structure under
consideration is

hom-

€ +e,

2¢,

€ett =

(27)

This quantity is independent of the strip width and spac-
ing; consequently, this is valid for mode velocities too.
Hence the structure shown in Fig. 1 presents the same
advantages as stripline-like microstrip structures. It is nat-
ural to refer to them as cylindrical stripline-like mlcrostrlp
structures.

1V. AN ELLIPTICAL MULTICONDUCTOR
STRIPLINE-LIKE MICROSTRIP
TRANSMISSION LINE

By using conformal mappings the above results can be
extended to other geometries of the stripline. Let us as-

sume, for example,
c 1
=—|z+— 28
2 (Z z ) (28)

where z = { + in is another complex variable. For z = re'®,
0 < ¢ <27, we obtain

c 1
§=—(r+——)cos<p
2 r

(29)

These relations give a parametric representation of an
ellipse in the » plane of eccentricity ¢ and semiaxes

1 b c 1
_2(r )

¢ 1y
n=—=|r——|sing, 0<p<2a.
2 ¥

c
a=—

+ —
27’

r

(30)
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Fig. 4. The multiconductor elliptical transmission line.

The image of the domain plotted in the x plane by the
mapping (28) is shown in Fig. 4. The semiaxes of the
confocal ellipses S;, S,, S; are given by relation (30) where
F =ry, 1y, 13, respectively. The positions of the strips on the
circuit ellipse are given by relations (29).

Since r=(a+b)/c, c=Va®>—b?, the condition r?=
ryr; implies that

a,+b,
as+ b,

a;+ b,
_a2+b2'

(31)

Conversely, if we have a transmission line whose cross
section contains the three confocal ellipses S, S,, S;, of
semimajor axes a,, a,, a; and semiminor axes by, b,, b, as
in relation (31) and symmetrical with respect to the major
axes, by using the conformal mapping
1 S
z= C(z+ z __cz) (32)
we obtain the domain shown in Fig. 1. In the case where
the striplines are symmetrical with respect to the minor
axes we have to make an additional rotation of #/2 to
map the given domain into the domain considered in Fig.
1. The Maxwell capacitance matrix can be obtained by the
formulas given above. Likewise, the mode velocities are
independent of the strip sizes and positions on the circuit
surface; therefore, this is an elliptical stripline-like mi-
crostrip transmission line.

V. APPLICATIONS

We shall now apply the obtained formulas to two simple
structures with one or two coupled striplines. In these
cases the given formulas provide analytical relations for
the capacitances in terms of elliptic functions.

A. Single-Stripline Case

Since we have n=2p —1, p=1, we use the relations
(14) and (16):

N°(1,1) = 0.5B°(1,0) = —

l a dt
2 -/—bo \/(kl‘z—tz)(tz— af)
=—0.5k K(\/l— a2k2)

dt
Me(1,1) = 0.54¢(1,1) = — —/
a \

S a)

= —le(a-kl).
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Hence
Ce 2K (ak,)

ate K[i-ak)

In this case we have

(33)

P1=—Q 11/1=(p b1=—01§a=sn((pK/7T,k1).

If In(r,/r) <« and ¢ < 7 we can approximate the
domain in the z; plane by an infinite strip and, corre-
spondingly, the conformal mapping function becomes

7z
Z=tanh —————. (34)
2In(r, /7))
In this case we have
7
- — tanh —————
k=1 a=tan 2in(ry /1))
T
1- a?k? =sech| ——0 | =, 35)
1
2In(ry/r))

The characteristic impedance of the line is

_ 2w KG)

Z - —_—
' e K()
where Z;, =y, /€, = 376.7 { is the characteristic imped-

ance of free space. In the case where €, = ¢,, relation (36)
coincides with that given in [8].

(36)

B. Two Equal Striplines
Inthiscase n=2p, p=l.Let Y,=~¢;=¢, @, = — 3,
= @ be the angles characterizing the ends of the two strips.
We have
b,=—a;,=b
a=sn(pK/7, k)
b=sn(yK/7, k).

a,=—b;=a

(37)
Relations (14) and (15) give

b%— 42

J1-kZa®
(38)

Similarly, the odd capacity results by using formulas (21)
and (22):

e Me(1.1) K(s,)
a+e, NY(L1) K(s))®

=k1

b?—a?
5= ——nu. (39
bl—a? (39)

Relations (24) give the complete Maxwell capacitance ma-

¢’ M°(1,1) K(s,)
e+e, N°(1,1)  K(s2)’
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trix in the form
K(s,)

c(1,1) =C(2,2) XG9)

K(So)}

K(s)
K(s)  K(s)

K(sl)  K(s;) }
(40)

1
E(Ce +C%) =€y {

(12 =c@.1)=3(c-c7) = {

VI

A class of cylindrical multiconductor transmission lines
has been analyzed by using the conformal mapping and
the relations between the potentials and the charges of the
system of aligned planar strips given in [2]. This class
includes cylindrical lines having the radius of the circuit
circle as the geometrical mean of the two ground circle
radii. In addition, the system exhibits a symmetry axis.

The paper provides an analytical expression of the
Maxwell capacitance matrix in terms of hyperelliptic inte-
grals. The capacitance matrix of the multistrip system in a
stratified dielectric is expressed by relation (26) in terms of
the Maxwell capacitance matrix of the same system placed
in free space. Since the effective dielectric constant of the
structure is simply the arithmetical mean of the dielectric
constants of the two substrate media, the mode velocity is
constant and therefore the considered cylindrical structure
enjoys the properties of planar stripline-like microstrip
structures. It is also pointed out how these results can be
extended to elliptical multiconductor transmission lines.

CONCLUSIONS
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