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~ Cylindrical Multiconductor Stripline-Like
Microstrip Transmission Line

DOREL HOMENTCOVSCHI

Abstract —An analytical expression for the Maxwell capacitance matrix

of a class of cylindrical inhomogeneous, multiconductor transmission lines

is provided. This class includes cyfindricaf structures symmetrical with

respect to the circuit circle and having a symmetry axis, The effective

dielectric constant of the fine is found to be the arithmetical mean of the

dielectric constants of the two media. Hence, this structure enjoys the

main advantages of the planar stripline-liie microstrip systems. It is also

pointed out how to obtain elliptical stripline-like microstrip transmission

lines.

I. INTRODUCTION

I N HIS PAPER Garg [1] considered a transmission

configuration which has the advantages of both stripline

and rnicrostrip line. This new transmission line consists in

an inhomogeneous planar shielded structure having equal

spacing (substrate thicknesses) between the plane of the

circuit and the upper and lower shield planes. In [2]

analytical formulas for determining the Maxwell capaci-

tance matrix of multiconductor coupled stripline-like mi-

crostrip lines are given. The results obtained confirm that

the dominant propagation modes have the same phase

velocities independent of the strip widths and spacing and

that the velocities are given by the phase velocity of the

uncoupled line. This characteristic will result in a very

good directivity for multiconductor coupled line direc-

tional couplers which use stripline-like microstrip.

Using flexible dielectric materials, it is possible to con-

struct nonplanar transmission lines that can be wrapped

around a cylindrical surface. This generates the cylindrical

transmission lines which, in the quasi-TEM operating

mode, have recently received much attention in the mi-

crowave literature. The first approach entails the solution

of the Laplace equation in orthogonal curvilinear coordi-

nates (cylindrical or elliptical); in this way Wang [3] ana-

lyzed homogeneous cylindrical striplines and microstrip

lines, Reddy and Deshpande [4] the cylindrical stripline

with multilayer dielectrics, and Joshi and Das [5] homoge-

neous elliptical striplines. In this method the solution is

expressed as an infinite series and the constants are deter-
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mined by truncating the series; h,mce the analysis is not

rigorous and the solutions are approximate. The second

approach [6]–[8] uses conformal mapping of the given

structure into a planar one and, further on, uses known

results for planar structures [9]. The method is rigorous but

in this form it is not suitable for the analysis of cylindrical

multiconductor transmission lines, Chan and Mittra [10]

applied another approach, the spectral-domain technique

[11], to study cylindrical multiconductor transmission lines.

This method allows a rigorous numerical iterative proce-

dure which uses the fast Fourier transform algorithm.

This paper presents. an analysis leading, in principle, to

an exact evaluation of parameters for an extensive class of

cylindrical inhomogeneous strip transmission line configu-

rations. The method is based on conformal mapping and

on the evaluation of Maxwell’s capacitance matrix for the

system of aligned planar strips given in [2]. The domain

must have a symmetry plane and at the same time must be

symmetrical with respect to the circuit surface. In the case

of the circular cylindrical structure, this requires that the

radius of the circuit cylinder equal the geometrical mean of

the radii of the two shield cylindrical surfaces. The as-

sumption that the domain is symmetrical with respect to

the circuit surface eliminates most of the complications

arising from the inhomogeneity of the dielectric substrate

media because the perpendicular component of the electric

field at the circuit surface is zero. The effective dielectric

constant of the system is simply the arithmetical mean of

the dielectric constant values of the two substrate media.

Hence, the structure presented here has the principal ad-

vantage of the symmetrical plane structure, namely that

the mode velocities are independent of the strip widths and

spacing; this is why the above structure can be thought of

as a cylindrical stripline-like micro strip structure.

It is to be noticed that the above-mentioned symmetry

of the structure with respect to a plane is necessary only

for computation of the Maxwell capacitance matrix. The

independence of the mode velocities of the strip dimen-

sions and spacing also holds if the last symmetry condition

is given up. By using certain conformal mappings the

above results can be extended tc~ such other nonplanar

structures as elliptical stripline-lik e microstrip structures,

which are discussed here as well.

0018-9480/89/0300-0497$01.00 01989 IEEE



498 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 3, MARCH 1989

Fig. 1. Multiconductor cylindrical transmission line.

II. BASIC CONFIGURATION AND

CONFORMAL MAPPINGS

The cross section of the cylindrical multiconductor

transmission line to be analyzed is shown in Fig. 1. It

consists of three circles $, S’2, S3; the cylindrical surfaces

S1 and S3 (of radii rl and r~, respectively) are grounded

and the surface S2 (the circuit surface) separates the two

different dielectric media whose relative dielectric con-

stants are c1 and (~. On the circuit surface are placed some

zero-thickness conducting strips AjBJ with arbitrary width

and spacing but symmetrical with respect to the horizontal

plane (Ox axis in Fig. 1). The position of the strips can be

characterized by T,, +, angles. It is assumed that rz = fi;

i.e., the radius of the circuit surface is the geometrical

mean of the shield cylindrical surfaces.

To analyze this system, operating in the quasi-TEM

mode, we use two conformal mappings. First, the logarith-

mic transform

(1)

maps the domain bounded by the circles SI and S2 and

the line cut into the symmetrical rectangle in the ZI = xl +

iyl plane (Fig. 2).

The logarithm determination in (1) is the principal one

and the abscissas of the points A,, B, will be rp,, +,,
respectively. Further on, the domain in Fig. 2 is confor-

mably mapped into the Z = X + i Y plane with certain line

cuts on the real axis (Fig. 3). This is obtained by using a

Schwarz–Christoffel transform for representing the upper

rectangle (dashed in Fig. 2) in the upper half-plane Im { Z }

> O; by symmetry reasons the domain filled with dielectric

medium of permittivity ~~ is mapped into the half-plane

Y <0. Hence we have

Z=sn(zl, K/w, kl). (2)

Here sn is the Jacobi function and K is the complete

L I 1
M I-l&l(r#,1 M

Fig. 2. The planar structure obtained by conformal mapping of the

domam in Fig. 1.

elliptic integral of the first kind of modulus kl. The

modulus is the solution of the equation

The abscissas a,, b, of the points corresponding to the

strip ends can be obtained as

aJ=sn(~,.K/~,kl) bj=sn($,.K/~, k~). (4)

The symmetry of the domain in Fig. 1 with respect to the

Ox axis implies the symmetry of the strips in Fig. 3 with

respect to the vertical axis.

III. DETERMINATION OF MAXWELL’S

CAPACITANCE MATRIX

Let ~, Qj be, respectively, the potential and the charge

on the strip AJBJ and let bO= bn+ ~ be the right end of the

first (infinite) conducting strip and an+ ~ the left end of the

other infinite strip in Fig. 3. We use the expression relating

the potentials and charges of a system of planar aligned

strips given in [2] and [12]:

(1=1,..., n) (5)

where

B(l, k) = (-l)k+’~;+’l~ dt

n+l

I’(z) =,~l(z-a, )(z-b, ). (6)

In formula (5) we can take into account the symmetry of

the strip. By also using the relation

fiB(l, j)=O
j=o
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Fig. 3. The canonic domain obtained by conformal mappings of the domain in Fig. 1.

we get

i
k=l

~ ‘~’B(Z,j)[Qk+(-1)’Q2,-k+l]
k=l~=O

= (<I+<J f f@,~)[~k+(-l)’~&~+~] forn=2p (even) (1=1,, .c,2p) (7)
k=l

k–l p–1

~ l?(Z, j)[Qk+(-l)l+’Q,p_,] +Qp ~ B(l, j)
~=o j=()

{
= (61+62) ‘i’A(Lk)[vk +(-1) ’+lv2p_k]+Fj4(l, p)

)
forn=2p–l (odd) (1=1,.-.,2P–1). (8)

k=l

In relation (8) the coefficient of QP and A(Z, p) vanishes

for even values of the index 1. Relations (11) and (12) give

We now write

~=~+y
Q,= Q;+Q;

Q’= Ce.ve (13)

v fl-J+l “q:–y Q.-J+l=Q~-Qy where the even Maxwell capacitance matrix is

(J=l”””H) C’=(61+62)[N-l”M’. (14)
Vn+l=v:+l Qn+l=Q%+I for n odd (9)

2 2 2 2 The matrices Ne, &fe have the entries

and we split the problem into an “even” problem and an

“odd” problem. k–1

N’(/’, lc) = ~ B’(2L’(, j)

A. The Even Maxwell Capacitance Matrix

If the potentials of the strips are symmetrical with

respect to the Ox axis in Pig. 1, we have VJ= V._, + ~~ VJ’;

the charges of the strips are symmetrical too, Q j = Q._J + ~

= Q; and the line MN can be assumed to be a magnetic

wall. In plane Z the lines- MPN are field lines and,

consequently, we have

b;= be
n+l= – l/kl a;+l = l/kl

P’(Z) =( Z2-k:2)Jfi1 (Z-aJ). (Z- bJ). (10)

Relations (7) and (8) become

ki(x?e(2’’+Q’=(’1+’2)$:’(2’’k)v’
(1’=1,. ,p) forn=2p (11)

(

p–l k–l

)( )

~ ~ B’(21’-1, j) Q;+ ~ ~~’B’(21’-l, j) Q;
k=l J=o J=O

(

p–1

=(q+t2) ~ Ae(21’-l, k) V,+: Ae(21’-l, p)~
k=l )

(/f=l,... ,p) forn=2p–1. (12)

J=o

Me(l’, k) = Ae(21’, k) (1’, k=l, ””., p) (15)

for n = 2p and

k–1

Ne(l’, k) = ~ Be(21’–l, j)
j=()

M=(l’, k) =A’(21’–l, k) (k=l,...,1)l)

p–1

N’(l’, p) = 0.5 ~ B’(21’– 1., j)
J=(J

Me(l’, p) = 0.5A’(21’–l, p) (l’=l,..., p) (16)

forti=2p -1.

B. The Odd Maxwell Capacitance Matrix

In the case where the strip potentials in the physical

plane are antisymmetrical with respect to the Ox axis we

have ~ = – Vn_j+ ~E ~ and the charges of the striPs are
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antisymmetrical too: Q, = – Q.., + ~= Q:. The line MN is n = 2p we have

now an electric wall at the zero potential and therefore the k–1

lines NPM in the Z plane are potential lines. We can write NO(l’, k) = ~ B“(21’–l, j)

~:=&=-l a:+l=l ,=0

MO(l’, k)= A0(21’–l, j) (1’, k=l,. ... p) (22)

P“(z)=(z2-l) fi(z-u,). (z-b,). (17)
~=1’

while for n = 2p –1,

Relations (7) and (8) now give k–1

( )$ ‘~lB0(21’-l, j) Q:
N“(l’, k) = “~-B0(21’, j) M“(l’, k) = A“(21’, k)

“/=0

k=l J=o

P
(1’, k=l,...,l) l). (23)

=(6, +C2) ~ A“(21’-l, k)v;
k=l C. The Complete Maxwell Capacitance Matrix

(1’=1,...,
By using the even and odd Maxwell capacitance matri-

p) for n = 2p (18)
ces given above we can now assemble the complete Maxwell

)‘~1 i ‘~lB~(2~, j) Q:= (q+ (2)p~1A0(21’, k)V;
matrix of the given structure. We have, for n = 2p,

k=l\J=o } k=l D

(1’=1,...,p–1) forn=2p–1. (19)
Q,= Q;+ Q;= i {c’(j. k) V;+c”(j, k) V;]

k=l

We have
Q.= ~o~o (20) = ~ 0.5[C’(j, k)+ CO(j, k)]Vk

k=l

where the odd Maxwell capacitance matrix is
2P

c“=(61+ e2)[iv”]-lM”. (21) + ~ 0.5[C’(j,2p–k+l)
k=p+l

The matrices N“, ill” are given by relations (22), (23). For
–C0(j,2p–k+l)]Vk for(j=l,.. .,p).

Hence

C(j, k)=
(

0.5[C’(j, k)+ C”(j, k)] forl<k<p

0.5[Ce(j,2p –k+l)– C0(j,2p–k+l)] forp+l<k<2p

(j=l,..., p)

C(j, k)=
(

0.5[Ce(2p -j+l, k)- C”(2p-j+l, k)], I<k<p

0.5[Ce(2p– j+l,2p–2k+l) +C0(2p–j+l,2p –k+l)] forp+l<k<2p

(j=p+l,...,2p).

Similarly in the case where n = 2p – 1 we obtain

/0.5[Ce(j, k)+ CO(j, k)], l<k<p–1

C(j, k)=

[

C’(j, p), k=p

0.5[C’(j,2p -k)- C0(j,2p -k)], p+l<k<2p–1

(j=l,...,1)l)

{

0.5 C’(p, k), l<k<p–1

C(p, k)= C’(p, p), k=p

0.5 C’(p,2p– k), p+l<k<2p–1

(24)

(25)

I
0.5[C’(2p– j,k)-C0(2p– j,k)], l<k<p–1

C(j, k)=
Ce(2p – j, p), k=p

0.5[Ce(2p –j,2p–k) +C0(2p–j,2p– k)], p+l<k<2p–1

(j=p+l, ”,2p-1)
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We shall now emphasize certain properties resulting

from the above relations. Expressions (24) and (25) pro-

vide the Maxwell capacitance matrix of the given structure

in terms of certain hyperelliptic integrals given by relations

(6). The geometry of the physical domain enters these

formulas only by the modulus kl and the images in the Z

plane of the end of the strips; these can be computed by

means of relations (3) and (4). The effective determination

of the Maxwell capacitance matrix involves some numeri-

cal quadrature and some algebra.

Let us now consider the case of the homogeneous dielec-

tric medium ( c1= c~ = c~). Relations (13) and (21) give

where the matrices C~O~, C~O~ correspond to the homoge-

neous case. Relations (24) and (25) give

cl+c~
c= —c

2E0 horn - (26)

Therefore, the Maxwell capacitance matrix of the multi-

conductor system in a stratified dielectric in Fig. 1 can be

obtained by relation (26) if we know the matrix of the

same multiconductor system in free space. Hence, the

effective relative dielectric constant of the structure under

consideration is

61+62
——

Ceff– 260 “
(27)

This quantity is independent of the strip width and spac-

ing; consequently, this is valid for mode velocities too.

Hence the structure shown in Fig. 1 presents the same

advantages as stripline-like microstrip structures. It is nat-

ural to refer to them as cylindrical stripline-like microstrip

structures.

IV. AN ELLIPTICAL MULTICONDUCTOR

STRIPLINE-LIKE MICROSTRIP

TRANSMISSION LINE

Fig. 4. The multiconductor elliptical transmission line,

The image of the domain plotted in the x plane by the

mapping (28) is shown in Fig. 4. The semiaxes of the

confocal ellipses S1, S2, S3 are given by relation (30) where

r = rl, rz, r~, respectively. The positions of the strips on the

circuit ellipse are given by relations (29).

Since r = (a + b)/c, c = ~~, the condition r;=

rlr~ implies that

az+bz al + bl
——

a~+b~ az + bz “
(31)

Conversely, if we have a transmission line whose cross

section contains the three confocal ellipses Sl, S2, S3, of

semimajor axes al, a ~, a ~ and semiminor axes bl, bz, b~ as

in relation (31) and symmetrical with respect to the major

axes, by using the conformal mapping

(32)

we obtain the domain shown in Fig. 1. In the case where

the striplines are symmetrical with respect to the minor

axes we have to make an additional rotation of 7/2 to

map the given domain into the dolmain considered in Fig.

1. The Maxwell capacitance matrix can be obtained by the

formulas given above. Likewise, the mode velocities are

independent of the strip sizes and positions on the circuit

surface; therefore, this is an elliptical stripline-like mi-

crostrip transmission line.

By using conformal mappings the above results can be V. APPLICATIONS
extended to other geometries of the stripline. Let us as-

sume, for example,
We shall now apply the obtained formulas to two simple

1
structures with one or two coupled striplines. In these

c

()

~=— ~+— (28)
cases the given formulas provide analytical relations for

22 the capacitances in terms of elliptic functions.

where z = { + iq is another complex variable. For z = re@’,

O < q < 2T, we obtain
A. Single-Stripline Case

Since we have n = 2p – 1, p =1; we use the relations

()
{=: r+: cosff

(14) and (16):

1

()

N’(1,1) =0.5B’(1,0) = - :J:b ~k;2_t;(t2_ a:)

q=: r–– sinrf, o<cp<27r. (29)
0

r
—
- -0.5k1K(~~]

These relations give a parametric representation of an

ellipse in the z plane of eccentricity c and semiaxes Me(l,l) =0.5A’(1,1) = - ;~”- ‘t

c 1

(1 ()

al ~(k~2– t2)(t2–a~)
a=— r+— b=: r–~ .

2r
(30)

r =–klK(a. kl).
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Hence trix in the form

Ce 2K(akl)

(

K(se) ~(so)
(33) C(l>l) = C(2,2) = ;(C’+ co) =Ceff — —

= K(~~) “
K(s; ) + K(sJ) }E1+c~

(

K(se) K(so)
In this case we have C(1,2) =c(2,1) =;(c’–c”)=6eff —–—

K(s~) )K(s:) “

If ln(r2/rl) << n and

domain in the ZI plane by an infinite strip and, corre-

spondingly, the conformal mapping function becomes

bl=–al= a=sn(rpK/r, kl)

r+<< v we can approximate the

‘ii-zl
Z = tanh

21n(r2/rl) “

In this case we have

(34)

The characteristic impedance of the line

K(s)

‘0= ~ “ K(s)

~ s. (35)

is

(36)

where ZOO= p o/c. = 376.7 Q is the characteristic imped-

ance of free Space. In the case where <1= Cz, relation (36)

coincides with that given in [8].

B. Two Equal Striplines

Inthiscase n=2p, p=l. Let ~2=–ql=~,rp2=-~1

= T be the angles characterizing the ends of the two strips.

We have

bz=–al=b az=—bl=a

a = sn(rpK/n, kl)

b=sn(~K/n, kl). (37)

Relations (14) and (15) give

c’ Me(l,l) K(se) m
— .
E1+62 N’(1,1) = k(s:) ‘

‘e=klm”

(38)

Similarly, the odd capacity results by using formulas (21)

and (22):

co M“(l,l) K(so)
~b~

——
N’(1,1) = K(s~) ‘

(39)
(1+62 ‘0= b~~ “

Relations (24) give the complete Maxwell capacitance ma-

(40)

VI. CONCLUSIONS

A class of cylindrical multiconductor transmission lines

has been analyzed by using the con formal mapping and

the relations between the potentials and the charges of the

system of aligned planar strips given in [2]. This class

includes cylindrical lines having the radius of the circuit

circle as the geometrical mean of the two ground circle

radii. In addition, the system exhibits a symmetry axis.

The paper provides an analytical expression of the

Maxwell capacitance matrix in terms of hyperelliptic inte-

grals. The capacitance matrix of the multistrip system in a

stratified dielectric is expressed by relation (26) in terms of

the Maxwell capacitance matrix of the same system placed

in free space. Since the effective dielectric constant of the

structure is simply the arithmetical mean of the dielectric

constants of the two substrate media, the mode velocity is

constant and therefore the considered cylindrical structure

enjoys the properties of planar stripline-like microstrip. .
structures. It is also pointed out how these results can be

extended to elliptical multiconductor transmission lines.
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